Role of BNIP3 in TNF-induced cell death--TNF upregulates BNIP3 expression.

نویسندگان

  • Saeid Ghavami
  • Mehdi Eshraghi
  • Kamran Kadkhoda
  • Mark M Mutawe
  • Subbareddy Maddika
  • Graham H Bay
  • Sebastian Wesselborg
  • Andrew J Halayko
  • Thomas Klonisch
  • Marek Los
چکیده

Tumor necrosis factor alpha (TNF) is a cytokine that induces caspase-dependent (apoptotic) and caspase-independent (necrosis-like) cell death in different cells. We used the murine fibrosarcoma cell line model L929 and a stable L929 transfectant over-expressing a mutated dominant-negative form of BNIP3 lacking the C-terminal transmembrane (TM) domain (L929-DeltaTM-BNIP3) to test if TNF-induced cell death involved pro-apoptotic Bcl2 protein BNIP3. Treatment of cells with TNF in the absence of actinomycin D caused a rapid fall in the mitochondrial membrane potential (DeltaPsim) and a prompt increase in reactive oxygen species (ROS) production, which was significantly less pronounced in L929-DeltaTM-BNIP3. TNF did not cause the mitochondrial release of apoptosis inducing factor (AIF) and Endonuclease G (Endo-G) but provoked the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 at similar levels in both L929 and in L929-DeltaTM-BNIP3 cells. We observed TNF-associated increase in the expression of BNIP3 in L929 that was mediated by nitric oxide and significantly inhibited by nitric oxide synthase inhibitor N5-(methylamidino)-L-ornithine acetate. In L929, lysosomal swelling and activation were markedly increased as compared to L929-DeltaTM-BNIP3 and could be inhibited by treatment with inhibitors to vacuolar H+-ATPase and cathepsins -B/-L. Together, these data indicate that TNF-induced cell death involves BNIP3, ROS production, and activation of the lysosomal death pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H-ras up-regulates expression of BNIP3.

BACKGROUND Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3) is a key regulator of cell death/autophagy and can act as an effector of a necrosis-like, atypical death program. It was implicated in execution of cell death induced by cluster of differentiation 47 (CD47). Despite the postulated role of BNIP3 in the regulation of survival of cancer cells, the influence of oncogenic t...

متن کامل

Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer.

Hypoxic conditions exist within pancreatic adenocarcinoma, yet pancreatic cancer cells survive and replicate within this environment. To understand the mechanisms involved in pancreatic cancer adaptation to hypoxia, we analyzed expression of a regulator of hypoxia-induced cell death, Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3). We found that BNIP3 was down-regulated in nine of nin...

متن کامل

Nutrient deprivation induces apoptosis of nucleus pulposus cells via activation of the BNIP3/AIF signalling pathway

Nutrient deprivation (ND)‑induced nucleus pulposus (NP) cell death serves an important role in intervertebral disc degeneration disease. However, the underlying mechanisms have yet to be thoroughly elucidated. The present study created a cell culture model under ND conditions to investigate the roles of the nutrient‑sensitive protein B‑cell lymphoma 2/adenovirus E1B 19 kDa‑interacting protein (...

متن کامل

Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes.

In this study, we provide evidence for the operation of BNIP3 as a key regulator of mitochondrial function and cell death of ventricular myocytes during hypoxia. In contrast to normoxic cells, a 5.6-fold increase (P<0.05) in myocyte death was observed in cells subjected to hypoxia. Moreover, a significant increase in BNIP3 expression was detected in postnatal ventricular myocytes and adult rat ...

متن کامل

BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia.

BACKGROUND AND PURPOSE Delayed neuronal death is a hallmark feature of stroke and the primary target of neuroprotective strategies. Caspase-independent apoptosis pathways are suggested as a mechanism for the delayed neuronal injury. Here we test the hypothesis that one of the caspase-independent apoptosis pathways is activated by BNIP3 and mediated by EndoG. METHODS We performed immunohistoch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1793 3  شماره 

صفحات  -

تاریخ انتشار 2009